Hrishabh Mishra

Université Paris Cité

https://hrishabh-m.github.io/home/ hrishabh.mishra@etu.u-paris.fr | hrishabh@cmi.ac.in

EDUCATION

Université Paris Cité

M2 de Mathématiques Fondamentales

Chennai Mathematical Institute M.Sc. Mathematics First Year

Chennai Mathematical Institute

B.Sc.(Honours) in Mathematics and Computer Science

PROJECTS

Integral Hasse principle for cubic surfaces

Institute of Science and Technology

- I conducted research in the Browning Group under the guidance of Prof. Tim Browning and Victor Y. Wang. My project focused on the integral Hasse principle for Markoff type cubic surfaces.
- My work led to **the paper** Integral Hasse principle for Markoff type cubic surfaces (appendix by Victor Y. Wang, submitted for publication, arXiv: 2408.06846). It provides new insights and applications to sparse sequences of log K3 surfaces. I established an asymptotic upper bound on the number of failures of the integral Hasse principle for this family of cubic surfaces, building on and improving the result of Ghosh and Sarnak.
- The proof provides a stronger lower bound for the number of orbits of a specific action on integral points. These methods can be adapted to more restricted cases, such as fixing a variable to be prime, and can also be extended to more general cubic surfaces.

Distribution of number fields

Chennai Mathematical Institute

- Worked under the guidance of Prof. Anwesh Ray. Our work primarily focused on Malle's conjecture and related themes, leading to the co-authorship of **four papers**.
- Two papers establish bounds for counting number fields by Galois group. We derive a lower bound for fields with Galois groups as wreath products of symmetric groups (ordered by norm of relative discriminant) and an upper bound, conditional on non-vanishing discriminants, for fields with prescribed Galois groups. This builds on work by Ellenberg-Venkatesh, Lemke Oliver-Landesman-Thorne, and Odoni (in arithmetic dynamics).
- One paper proves the strong form of Malle's conjecture for the product of symmetric groups S_n and finite nilpotent groups for n = 3, 4, 5, under specific constraints on the nilpotent groups. This work builds on Jiuya Wang's results on abelian groups.

Explicit formulas in the shifted convolution problem

Institut de Mathématiques de Marseille

- Conducted research under the guidance of **Prof. Sary Drappeau**. Derived an explicit formula for the **Titchmarsh** divisor problem. Utilizing this formula, established asymptotics for the short interval version of the problem.
- Building on Prof. Drappeau's methods, I derived an explicit formula for the Titchmarsh divisor problem. By applying Siegel's Theorem, Page's Theorem, a log-free zero-density estimate, and the Vinogradov-Korobov zero-free region for Dirichlet *L*-functions, I established the short interval version.
- I extended my study to the work of Drappeau-Topacogullari and Fouvry-Tenenbaum, aiming to apply similar methods to a class of multiplicative functions. The proof is still being finalized.

Frobenius distributions of Drinfeld modules

Chennai Mathematical Institute

- As part of the assessment for the Function field arithmetic elective course I studied the paper Frobenius distributions of Drinfeld modules of any rank by **C. David**.
- I also delivered a talk based on my reading. A short write-up can be found on my homepage.

Paris, France Sep 2024 - present

Chennai, India Aug 2023 - May 2024

Chennai, India Dec 2020 - May 2023

June 2024 – Aug 2024 Vienna, Austria

Oct 2022 - May 2024 Chennai, India

Marseille, France

Oct 2023

Chennai, India

May 2023 – July 2023

Abelian varieties over finite fields

Preliminary Arizona winter school

- I was a selected participant for preliminary Arizona winter school on Abelian varieties over finite fields taught by Lassina Dembele.
- Weekly problem-solving sessions were organized by teaching assistants where students discussed and presented their solutions.

PREPRINTS AND PUBLICATIONS

Integral Hasse principle for Markoff type cubic surfaces appendix by Victor Y. Wang, submitted for publication	arXiv:2408.06846
On Malle's conjecture for the product of a symmetric and a nilpotent groups joint with Anwesh Ray, accepted for publication in Nagoya Math. Journal	arXiv:2402.01189
Upper bounds for the number of number fields with prescribed Galois group <i>joint with Anwesh Ray, submitted for publication</i>	arXiv:2310.00601
Counting number fields whose Galois group is a wreath product of symmetric groups <i>joint with Anwesh Ray, submitted for publication</i>	arXiv:2306.15411
On the number of subrings of \mathbb{Z}^n of prime power index joint with Anwesh Ray, submitted for publication	arXiv:2211.16595
TALKS AND PRESENTATIONS	
Most odd-degree binary forms fail to primitively represent a square Browning group, Institute of Science and Technology	Vienna, Austria June 2024
Frobenius distributions of Drinfeld modules Chennai Mathematical Institute	Chennai, India Nov 2023
Malle's conjecture for wreath products CMI-IMSc Number theory seminar	Chennai, India Oct 2023
Conferences and Workshops	
Circle Method and Related Topics	Bengaluru, India Nov 2024
Graz-ISTA Number Theory Days TU Wien	Vienna, Austria June 2024
New directions in rational points Chennai Mathematical Institute	Chennai, India Jan 2024
Hida theory and Iwasawa main conjecture over ${\mathbb Q}$ Chennai Mathematical Institute	Chennai, India Dec 2023
Arithmetic Statistics The Centre International de Rencontres Mathématiques	Luminy, France May 2023
Chennai-Tirupati number theory conference Chennai Mathematical Institute	Chennai, India Feb 2023
Online learning seminar on work of Alexander Smith Organized by Alexander Smith	Online Sep 2022

Scientific internship at IST, Austria Funded research project at IST, Austria.	2024
Infosys Scholarship	
Infosys , a disbursement after every semester for books and related expenses.	2023-24
M.Sc. Scholarship	
CMI , tuition fee waiver and monthly stipend for M.Sc. at CMI.	2023-24
ReLaX Labs funded research project in France	
Providing comprehensive support including travel expenses and accommodation.	2023
Future research talent award	
ANU, a grant of A\$ 7000 for research under supervision at ANU, Australia.	2023
SRIRAM Scholarship	
CMI , tuition fee waiver and monthly stipend for undergraduate studies at CMI.	2020-2023
TEACHING EXPERIENCE	
Algebra I	Chennai, India
Chennai Mathematical Institute	Fall 2021

• I was one of the **teaching assistants** for the Algebra I (Linear Algebra) core course for first years at CMI. The course instructor was **Prof. T. R. Ramadas**. Teaching assistants were responsible for taking tutorials, grading quizzes, and exams.

MISCELLANEAOUS

- Languages: Python, Haskell, Java, JavaScript, HTML & CSS, PHP.
- Tools: LTEX, SageMath, PARI/GP.