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Abstract. We prove an approximate formula for the sum
∑

n≤x Λ(n)τ(n − 1) involving
zeros of Dirichlet L-functions similar to the classical approximate formula for

∑
n≤x Λ(n).

Using the approximate formula we obtain asymptotics for
∑

x<n≤x+y Λ(n)τ(n − 1) where
xθ < y < x for suitable 0 < θ < 1 without assuming the Riemann hypothesis for Dirichlet
L-functions.

1. Introduction

Many important problems in analytic number theory can be regarded as problems in un-
derstanding correlations of pairs of arithmetic functions. Quantitatively, solving a number of
important problems involves the knowledge of the asymptotic behavior of the sum

(1.1)
∑
n≤x

f(n)g(n− 1),

for certain arithmetic functions f, g : N → C. For instance, the twin-prime conjecture can be
regarded as a conjecture of the sum 1.1 with suitable f, g. In general, obtaining asymptotic
behavior for the sum 1.1 is a very hard problem but we know the asymptotic behavior in
certain cases. We understand the asymptotics well when g is the function τ counting the
number divisors and f is either the indicator function of primes [Fou85, BFI86], the function
τk counting the number of ways a number can be written as a product of k positive integers
[Mot80, Top16, Top17] or the indicator function of integers with small prime factors [FT90,
Dra15]. When g is the function τ , the full asymptotic expansion for the sum 1.1 was obtained
by Drappeau and Topacogullari in [DT19] for a large class of multiplicative functions f that
are periodic over primes. One can also consider the weighted correlations, in particular, we
can consider the logarithmically weighted correlation

(1.2)
∑
n≤x

f(n)g(n− 1)

n
.

This has been studied in great detail in Tao’s paper [Tao16]. One important case of the
problem 1.1 is the Titchmarsh divisor problem, the special case when f is the Von Mangoldt
function Λ : N → C defined below

Λ(n) :=

{
log p if n = pα for some prime p,
0 otherwise.

and g is the function τ . This problem was first considered by Titchmarsh in 1930 [Tit30].
Let us denote the sum 1.1 in this special case by T (x). Assuming the Riemann hypothesis
for all Dirichlet L-functions Titchmarsh proved that T (x) ∼ C1x log x for some C1 > 1. The
same asymptotic for T (x) was proved by Linnik [Lin63] unconditionally using the dispersion
method. Simpler proofs were given by Rodriquez [Rod65] and Halberstam [Hal67] using
Bombieri-Vinogradov and Brun-Titchmarsh theorems. A much better estimate was obtained
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by Fouvry [Fou85] and Bombieri-Freidlander-Iwaniec [BFI86] independently, we state the
formula below.

Theorem A (Fouvry [Fou85], Bombieri-Friedlander-Iwaniec [BFI86]). For all A > 0 and
x ≥ 3,

T (x) = C1x{log x+ 2γ − 1− 2C2}+OA

(
x

logA x

)

where C1 =
∏

p

(
1 + 1

p(p−1)

)
, C2 =

∑
p

(
log p

1+p(p−1)

)
and γ denotes the Euler-Mascheroni con-

stant.

The proof of this result involves obtaining Bombieri-Vinogradov-type estimates without
absolute values in the sum. Bombieri-Friedlander-Iwaniec prove the following estimate for
primes in arithmetic progressions.

Theorem B ([BFI86]). For every A > 0 we can find B and C depending on A such that the
inequality ∣∣∣∣∣∣

∑
q≤Q,(q,a)=1

π(x; q, a)− 1

ϕ(q)
π(x)

∣∣∣∣∣∣ ≤ Cx

logA 3x

holds for all x ≥ 1, Q ≤ x/logB 3x and any integer 1 ≤ |a|≤ logA 3x.

Further in 2015, Drappeau [Dra17, Theorem 1.1] obtained a power-saving error term in the
above estimate assuming the Riemann hypothesis for all Dirichlet L-functions. We state the
theorem below.

Theorem C (Drappeau [Dra17]). Assume GRH. Then for some δ > 0 and all x ≥ 2,

T (x) = C1x{log x+ 2γ − 1− 2C2}+O(x1−δ).

We elaborate more on his method in Section 2 below. He also obtains an unconditional
estimate [Dra17, Theorem 1.2]. As a corollary [Dra17, Corollary 1.4] of this estimate, he
proves the following unconditional inequality

Corollary (Drappeau [Dra17]). With an effective implicit constant, we have∑
p≤x

τ(p− 1) ≤ C1{x+ 2li(x)(γ − C2)}+O(xe−δ
√
x)

for some δ > 0.

Instead of considering sums of the form 1.1, in this paper we consider the asymptotic
behavior of sums of the form

(1.3)
∑

x<n≤x+y

f(n)g(n− 1),

for arithmetic functions f, g and α(x) ≤ y < x where α(x) : R → R is a suitable function.
We consider the special case when f := Λ and g := τ . A similar problem was considered by
Assing, Blomer, and Li in [ABL21, cf. Theorem 1.1]. We state the main theorems of this
paper.



TITCHMARSH DIVISOR PROBLEM IN INTERVALS 3

1.1. Main Results. We obtain an approximate formula for the sum T (x) involving zeros of
Dirichlet L-functions similar to other approximate formulas in multiplicative number theory.
We state the formula below as Theorem 1.1. To state the result, let us denote

LR,q(s) :=
∏

χ mod q,
cond(χ)≤R

L(s, χ).

Theorem 1.1. There exist A > 0 and δ ∈ (0, 1) such that for T ≥ 2 and all x ≥ 2 we have
that

T (x) = C1x{log x+ 2γ − 1− 2C2} −
∑

q≤
√
x,

∑
LR,q(ρ)=0
|Im(ρ)|≤T

2(xρ − q2ρ)

ϕ(q)ρ

+O

(
R
x

T
log3(xT ) +R log3 x+ x(log x)AR−1/9 + x1−δ

)
where 1 ≤ R ≤ x1/10 is a parameter.

Next, using the above approximate formula, zero-free regions, and zero-density results about
Dirichlet L-functions we obtain an estimate for the sum 1.3 in the special we are considering
with α(x) := xθ for suitable θ ∈ (0, 1). More precisely, we prove the following estimate.

Theorem 1.2. For some 1 > θ > 0 and for all x≫ 2 and xθ < y < x the following estimate
holds,

T (x+ y)− T (x) = C1y log x+ C1(x+ y) log

(
1 +

y

x

)
+ {2γ − 1− 2C2}y +O

(
y

log x

)
.

Next, we describe our notation and give an outline of the paper.

1.2. Notation and Outline. We use the notation widely used in literature. We define the
following functions from R to C,

ψ(x) :=
∑

1<n≤x

Λ(n), ψ(x; q, a) :=
∑
n≤x

n≡a mod q

Λ(n), ψq(x) :=
∑
n≤x

(n,q)=1

Λ(n).

Let χ : Z → C be a Dirichlet character then we define the function ψ(x, χ) : R → C,

ψ(x, χ) :=
∑

1<n≤x

Λ(n)χ(n),

and we define the functions ϕ0(x), ϕ0(x, χ) : R → C below

ψ0(x) :=
ψ(x+) + ψ(x−)

2
, ψ0(x, χ) :=

ψ(x+, χ) + ψ(x−, χ)

2
.

This paper consists of four sections including the Introduction. In Section 2, we use stan-
dard results to prove some approximate formulas for suitable sums. Then we recall some setup
from previous work on the Titchmarsh divisor problem in [Dra17] and reduce the proof of
Theorem 1.1 to obtain an approximate formula for the sum S−

1 introduced in [Dra17, Section
6] and defined in Section 2. We obtain the approximate formula for S−

1 in Section 3 and prove
Theorem 1.1. Entire Section 4 is devoted to the proof of Theorem 1.2 using Theorem 1.1 and
results about zeros of the Dirichlet L-functions stated in Section 2.
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2. Preliminaries

First, we state an approximate formula for ψ(x, χ) which can be easily obtained from the
results in [MV06, Chapter 12]. We will use this formula to obtain an approximate formula for
the sum in the Titchmarsh divisor problem. For principal characters, we have the following
result,

Lemma 2.1. Let T ≥ 2 and let χ0 be a principal Dirichlet character modulo q ≥ 1. Then we
have the following,
(2.1)

ψ(x, χ0) = x−
∑

L(ρ,χ0)=0
|Im(ρ)|≤T

xρ

ρ
−log 2π+O

(
log x log q + log x+

x

T
(log xT )2 + log q log

(
T log q

2π

))
.

Proof. For q = 1 this follows immediately from [MV06, Theorem 12.5] and the fact ψ(x) =
ψ0(x) + O(log x). For q > 1, we deduce that ψ(x, χ0) = ψ(x) + O(log x log q). We note that
L(s, χ0) and ζ(s) have same zeros except those coming from the product

∏
p|q(1−p−s). These

are of the form ρ = 2πik/log p, k ∈ Z. Now,∑
p|q

∑
2π|k|
log p

≤T

∣∣∣∣xρρ
∣∣∣∣≪∑

p|q

log p log

(
T log p

2π

)

≪ log q log

(
T log q

2π

)
and the result follows immediately. □

For non-principal characters, we obtain a similar formula using the following result which
is an easy consequence of [Theorem 12.10][MV06]

Lemma 2.2. Let T ≥ 2 and let χ be a primitive Dirichlet character modulo q > 1. Then we
have the following,

ψ0(x, χ) = −
∑

L(ρ,χ)=0
|Im(ρ)|≤T

xρ

ρ
+ C(χ) +O

(
log x+

x

T
(log xqT )2

)
,

where C(χ) = L′

L (1, χ) + log(q/2π)− γ.

Proof. Follows immediately from [MV06, Theorem 12.10] □

We deduce the following result from the above lemma.

Lemma 2.3. Let T ≥ 2 and let χ be a non-principal character modulo q > 1 induced by a
primitive character χ∗ modulo q∗ > 1 then,

ψ(x, χ) = −
∑

L(ρ,χ)=0
|Im(ρ)|≤T

xρ

ρ
+ C(χ∗) +O

(
x

T
log2(xqT ) + log 2q log x+ log q log

(
T log q

2π

))

Proof. We note that ψ(x, χ) = ψ0(x, χ
∗) + O(log 2q log x), further we also note that that

L(s, χ) and L(s, χ∗) have same zeros except for the zeros which come from the product
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p|q,p∤q∗(1 − p−s). These are of the form ρ = 2πik/log p, k ∈ Z. Now, from proof of the

Lemma 2.1 we have that ∑
p|q

∑
2π|k|
log p

≤T

∣∣∣∣xρρ
∣∣∣∣≪ log q log

(
T log q

2π

)

therefore, we have proven the result. □

Following the discussion in [Dra17, Section 6] we recall the same setup to prove the pre-
liminary results. We will use these to obtain the main results of this paper. Using Dirichlet
hyperbola method [FT85, p. 45] we deduce that,

T (x) = 2
∑
q≤

√
x

(ψ(x; q, 1)− ψ(q2; q, 1)) +O(
√
x log x).

Therefore, we consider the sum above to find the estimates for T (x). From the proof of
[Dra17, Proposition 6.3] we deduce that∑

q≤
√
x

(ψ(x; q, 1)− ψ(q2; q, 1)) = S+
1 + S−

1 ,

where S+
1 = O(x(log x)AR−1/9) for some A > 0 and

(2.2) S−
1 =

∑
q≤

√
x

1

ϕ(q)

∑
χ mod q

cond(χ)≤R

∑
q2<n≤x

Λ(n)χ(n),

and 1 ≤ R ≤ x1/10 is a parameter. In his proof, Drappeau takes R to be a small power of x
and proves that the contribution of non-principal characters in the sum is at most O(x1−δ)
for some δ > 0, proving the power saving error term. We consider the sum S−

1 and obtain an
approximate formula for S−

1 in Section 3. We state some results which are easy consequences
of Lemmas 2.1 and 2.3. In more detail, we use lemma 2.1 to deduce that for any q ≤

√
x and

for any principal character χ0 modulo q ≥ 1 following holds,

ψ(x, χ0)− ψ(q2, χ0) =
∑

q2<n≤x

Λ(n)χ0(n)

= (x− q2)−
∑

L(ρ,χ0)=0
|Im(ρ)|≤T

xρ − q2ρ

ρ
+O

(
x

T
log2(xT ) + log2 x

)
.

(2.3)

Similarly for non-principal characters, we use lemma 2.3 to conclude that for q ≤
√
x and

any non-principal character χ modulo q > 1 induced by a primitive character χ∗ modulo
q∗ > 1,

ψ(x, χ)− ψ(q2, χ) =
∑

q2<n≤x

Λ(n)χ(n)

= −
∑

L(ρ,χ)=0
|Im(ρ)|≤T

xρ − q2ρ

ρ
+O

(
x

T
log2(xqT ) + log2 x

)
.

(2.4)
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2.1. Results on zeros of Dirichlet L-functions. In this subsection, we state the infor-
mation we need about the zeros of Dirichlet L-functions required to prove Theorem 1.2. We
need the following result.

Theorem 2.4 (Zeros results). There is an absolute and effective constant κ > 0 such that,
for any q,Q ≥ 1 the functions Fq(s) =

∏
χ mod q L(s, χ) GQ(s) =

∏
q≤Q

∏∗
χ mod q L(s, χ) has

following properties:
(1) (Siegel′s Theorem) for any ϵ > 0 there exists a constant Cϵ > 0 (non-effective) such

that Fq(σ) has no real zeros ≥ 1− Cϵ/q
ϵ.

(2) (Page′s Theorem) GQ(s) has at most one zero in the region Re(s) ≥ 1− κ
log(Q(2+|t|)) .

If such a zero exists it is real, simple, and arises from a real character.
(3) (log-free zero-density estimate) for any ε > 0 and any σ ≥ 1/2, T ≥ 1, GQ(s) has

≪ε (Q
2T )(12/5+ε)(1−σ) zeros in the region Re(s) ≥ σ and |Im(s)|≤ T .

(4) (Vinogradov −Kurobov zero− free region) Let χ mod q be a character then L(s, χ)
has at most one zero in the region Re(s) ≥ 1 − κ

log q+(log|t|)2/3(log log|t|)1/3 and |t|≥ 10.
If such a zero exists it is real, and arises from a real character.

For a proof of Siegel’s and Page’s theorem, we refer to [MV06, Chapter 11] and the log-free
zero-density estimate is proved in [Hux75] for values of σ bounded away from 1, and in [Jut77]
for values of σ close to 1. For Vinogradov-Kurobov zero-free region, we refer to [Mon94, p.
176].

3. Proof of Theorem 1.1

Combining results from the previous section and results from [Dra17, Section 6] we prove
the formula for T (x). From equation 2.2 we know that

S−
1 =

∑
q≤

√
x

1

ϕ(q)

∑
χ mod q

cond(χ)≤R

∑
q2<n≤x

Λ(n)χ(n),

where 1 ≤ R ≤ x1/10 is a parameter. Using equations 2.3, 2.4 we obtain that for T ≥ 2,

S−
1 =

∑
q≤

√
x

x− q2

ϕ(q)
−
∑

q≤
√
x,

∑
LR,q(ρ)=0
|Im(ρ)|≤T

xρ − q2ρ

ϕ(q)ρ
+O

(
R
x

T
log3(xT ) +R log3 x

)
.

We used LR,q(s) to denote the following product of Dirichlet L-functions
∏

χ mod q
cond(χ)≤R

L(s, χ)

in the above formula (as in the Introduction). Noting that

T (x) = 2(S−
1 + S+

1 ) +O(
√
x log x),

and using the estimate for S+
1 from [Dra17, p. 721] and the main term from [Dra17, Theorem

1.1] we conclude that there exist A > 0 and δ ∈ (0, 1) such that for T ≥ 2 and all x ≥ 2 we
have that

(3.1)

T (x) = C1x{log x+ 2γ − 1− 2C2} −
∑

q≤
√
x,

∑
LR,q(ρ)=0
|Im(ρ)|≤T

2(xρ − q2ρ)

ϕ(q)ρ

+O

(
R
x

T
log3(xT ) +R log3 x+ x(log x)AR−1/9 + x1−δ

)
,
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as earlier 1 ≤ R ≤ x1/10 is a parameter, C1 =
∏

p

(
1 + 1

p(p−1)

)
and C2 =

∑
p

(
log p

1+p(p−1)

)
.

This concludes the proof of the result.
As a simple consequence of this formula, taking R = x1/100 and T = x1/10 we see the

following result,

Corollary. For some δ1 > 0 and all x ≥ 2 we have that,

T (x) = C1x{log x+ 2γ − 1− 2C2} −
∑

q≤
√
x,

∑
L
x1/100,q

(ρ)=0

|Im(ρ)|≤x1/10

2(xρ − q2ρ)

ϕ(q)ρ
+O(x1−δ1).

4. Proof of Theorem 1.2

We prove Theorem 1.2 using Theorem 1.1 in combination with the results about the zeros of
Dirichlet L-functions stated in Theorem 2.4. Our approach will be similar to the methods used
by Harper in [Har12, Section 3] to deal with sums involving characters with small conductors.
We begin by proving the following lemma using zero results in Section 2. For a complex
number ρ we denote by β the real part of ρ.

Lemma 4.1. Let x ≥ 2, suppose 0 < η < 1/10 and 0 < µ < 1 are such that 2η + µ < 1/3
then for any primitive Dirichlet character χ mod r with r ≤ xη we have,∑

L(ρ,χ)=0,
|Im(ρ)|≤T

xβ−1 = O(1),

where T = xµ and the constant is absolute.

Proof. For α ≥ 1/2 and t ≥ 1 let N(α, t) denote the number of zeros of L(s, χ) in the region
R(α, t) := {z ∈ C : Re(z) ≥ α, |Im(s)|≤ t}. It follows from the routine calculation [IK04,
Chapter 10] that∑

L(ρ,χ)=0,
|Im(ρ)|≤T

xβ−1 − 2 ≤ 2

∫ 1

1/2
xα−1dN(α, T )

≪ x−1/2N(1/2, T ) + log x

∫ 1

1/2
xα−1N(α, T )dα.

Using log-free zero-density estimates from Theorem 2.4 we conclude that

N(α, T ) ≪ (x2ηT )3(1−α).

If 2η + µ < 1/3 then we note that x−1/2N(1/2, T ) ≪B
1

logB x
for any B > 0. Now, using

Page’s theorem from Section 2 we deduce that
∫ 1
1/2 x

α−1N(α, T )dα =
∫ 1/2
κ′/log x

(
(x2ηT )3

x

)α
dα

for some constant κ′ > 0. Integrating we get,∫ 1/2

κ′/log x

(
(x2ηT )3

x

)α

dα≪ 1

log
(
(x2ηT )3

x

)
((x2ηT )3

x

)1/2

+

(
(x2ηT )3

x

)κ′/log x


Again using the fact that 2η + µ < 1/3 we immediately conclude that

log x

∫ 1

1/2
xα−1N(α, T )dα = O(1).
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The result is proven. □

We start working towards the asymptotics for T (x+y)−T (x) with y in the desirable range.
Considering the formula in Theorem 1.1 for the sum T (x) we deduce that for x ≫ 2, and
y ≫ x1−δ,

T (x+ y)− T (x)

y
=C1 log x+ C1(x/y + 1) log

(
1 +

y

x

)
+ {2γ − 1− 2C2}

−
∑

q≤
√
x+y,

∑
LR,q(ρ)=0
|Im(ρ)|≤T

2((x+ y)ρ − q2ρ)

ϕ(q)ρy
+
∑

q≤
√
x,

∑
LR,q(ρ)=0
|Im(ρ)|≤T

2(xρ − q2ρ)

ϕ(q)ρy

+O

(
R
x

Ty
log3(xT ) +

R log3 x

y
+
x(log x)A

yR1/9
+

1

log x

)
,

(4.1)

We let R = xη and T = xµ such that 0 < η < 1/10, 0 < µ < 1 and 2η + µ < 1/3. We will
specify these later. Next, we consider the difference between the sums involving zeros of the
Dirichlet L-functions in the above formula for T (x+ y)− T (x) divided by y,∑

q≤
√
x+y,

∑
LR,q(ρ)=0
|Im(ρ)|≤T

2((x+ y)ρ − q2ρ)

ϕ(q)ρy
−
∑

q≤
√
x,

∑
LR,q(ρ)=0
|Im(ρ)|≤T

2(xρ − q2ρ)

ϕ(q)ρy
.

For the moment we ignore the contribution coming from
√
x < q ≤

√
x+ y in the first sum

above, therefore we estimate the sum,∑
q≤

√
x,

1

ϕ(q)

∑
LR,q(ρ)=0
|Im(ρ)|≤T

2((x+ y)ρ − xρ)

ρy
.

Re-writing this sum over characters induced by primitive characters with small moduli we
obtain that the above is the same as the sum,

(4.2)
∑
r≤R

∑
χ∗ mod r,

χ∗ primitive

∑
q≤

√
x

1

ϕ(q)

∑
χ mod q,

χ induced by χ∗,

∑
L(ρ,χ)=0,
|Im(ρ)|≤T

2((x+ y)ρ − xρ)

ρy
.

Let us denote by β the real part of ρ then the above summation is,

≪
∑
r≤R

∑
χ∗ mod r,

χ∗ primitive

∑
q≤

√
x

1

ϕ(q)

∑
χ mod q,

χ induced by χ∗,

∑
L(ρ,χ)=0,
|Im(ρ)|≤T

xβ−1.

If χ mod q is induced by a primitive character χ∗ mod r then L(s, χ) and L(s, χ∗) have same
zeros except the zeros of the product

∏
p|q,p∤r(1− p−s), but R is a small power of x, therefore

for any B > 0 the expression we are considering above is,

∑
r≤R

∑
χ∗ mod r,

χ∗ primitive

∑
q≤

√
x,

r|q

1

ϕ(q)

∑
L(ρ,χ∗)=0,
|Im(ρ)|≤T

xβ−1 +OB

(
1

logB x

)
.
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Now, we focus on the simpler sum,∑
r≤R

∑
χ∗ mod r,

χ∗ primitive

∑
q≤

√
x,

r|q

1

ϕ(q)

∑
L(ρ,χ∗)=0,
|Im(ρ)|≤T

xβ−1.

We will deal with this sum by dividing it into multiple pieces. We define the following "good"
set of characters, making this sum easier to handle. Let c1, c2 > 0 we will specify them later
to obtain the desired asymptotics,

S :=
⋃

1<r≤eη
√

log x

{χ∗ mod r, primitive : L(s, χ∗) ̸= 0 for any Re(s) > 1− c1

(log x)3/4
,

|Im(s)|≤ T},

and

S2 :=
⋃

eη
√
log x<r≤R

{χ∗ mod r, primitive : L(s, χ∗) ̸= 0 for any Re(s) > 1− c2√
log x

,

|Im(s)|≤ T}.

Suppose χ∗ ∈ S1 and let N(α, t) be defined as in the proof of Lemma 4.1. Then as in the
proof of the Lemma 4.1 using log-free zero-density estimate and the definition of S1 we obtain
the following after computation

∑
L(ρ,χ∗)=0,
|Im(ρ)|≤T

xβ−1 ≤ 2

∫ 1

1/2
xα−1dN(α, T )

≪ x−1/2N(1/2, T ) + log x

∫ 1

1/2
xα−1N(α, T )dα

≪ x−1/2N(1/2, T ) + log x

∫ 1

1−c1/(log x)3/4
xα−1N(α, T )dα

≪B
1

logB x
,

for any B > 0. For χ∗ ∈ S2, we proceed by splitting the sum into dyadic intervals. For any
3 ≤ M ≤ xη, let NM (α, t) denote the number of zeros of G2M (s) (see Theorem 2.4) in the
region R(α, t) := {z ∈ C : Re(z) ≥ α, |Im(s)|≤ t}. From log-free zero-density estimate we get
the bound NM (α, T ) ≪ (M2T )3(1−α). Using this bound we conclude that,∑

M<r≤2M

∑
χ∗ mod r,
χ∗∈S2

1

ϕ(r)

∑
L(ρ,χ∗)=0,
|Im(ρ)|≤T

xβ−1 ≪ log logM

M

∑
M<r≤2M

∑
χ∗ mod r,
χ∗∈S2

∑
L(ρ,χ∗)=0,
|Im(ρ)|≤T

xβ−1

≪ log logM

M

∫ 1

1/2
xα−1dNM (α, T )

≪ log logM

M
,
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as the bound on NM (α, t) gives us the following estimate,∫ 1

1/2
xα−1dNM (α, T ) ≪ x−1/2NM (1/2, T ) + log x

∫ 1/2

c2/
√
log x

(
x3(2η+µ)

x

)α

dα

≪ 1.

Summing by splitting into dyadic intervals, we note that we need to divide the interval
(eη

√
log x, xη] into at most ≪ log x dyadic intervals, and using the above estimate we obtain,∑

r≤R,

∑
χ∗ mod r,
χ∗∈S2

∑
q≤

√
x,

r|q

1

ϕ(q)

∑
L(ρ,χ∗)=0,
|Im(ρ)|≤T

xβ−1 ≪B
1

logB x
,

for any B > 0. Next, we work with primitive characters with moduli r in the range eη
√
log xx <

r ≤ R but which are not in S2. We will follow the same strategy of splitting into dyadic
intervals. Using log-free zero-density estimate from Section 2 we obtain that that for any
M ≥ 3, ∑

M<r≤2M

∑
χ∗ mod r,
χ∗/∈S2

1

ϕ(r)
≪ log logM

M

∑
M<r≤2M

∑
χ∗ mod r,

L(s,χ∗)=0 for some s

Re(s)>1−c2/
√
log x,|Im(s)|≤(2M)µ

√
log x/η

1

≪ log logM

M
(M2/

√
log x(2M)µ/η)3c2 .

Assuming µ/η < 1000 and choosing c2 in a suitable manner we can assume that the above
is ≪ M−1/17. Similar to the sum for characters in S2 we again sum by splitting into dyadic
intervals, and using Lemma 4.1 we obtain,∑

r≤R,

∑
χ∗ mod r,
χ∗ /∈S2

∑
q≤

√
x,

r|q

1

ϕ(q)

∑
L(ρ,χ∗)=0,
|Im(ρ)|≤T

xβ−1 ≪B
1

logB x
,

for any B > 0. Now, we only have to deal with contributions from characters with conductors
less than or equal to eη

√
log x and not in S1. Using Vinogradov-Korobov zero free region given

in Theorem 2.4 we can choose c1 such that there can be at most one such bad character with
only one real zero. Let us call this character χ∗

bad with conductor rbad, its contribution to sum
of our interest is, ∑

q≤
√
x,

rbad|q

1

ϕ(q)

∑
L(ρ,χ∗

bad)=0,
|Im(ρ)|≤T

xβ−1 ≪ 1

ϕ(rbad)

∑
q≤x/rbad

1

ϕ(q)

≪ log x

ϕ(rbad)
.

As L(s, χ∗
bad) has a real zero greater than 1 − c1/

√
log x, Siegel’s theorem from Section 2

implies that rbad ≫B logB x for any B > 0. As a consequence we have,∑
q≤

√
x,

rbad|q

1

ϕ(q)

∑
L(ρ,χ∗

bad)=0,
|Im(ρ)|≤T

xβ−1 ≪B
1

logB x
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for all B > 0. Combining all the previous results for characters in different sets we considered,
we conclude that,∑

r≤R

∑
χ∗ mod r,

χ∗ primitive

∑
q≤

√
x,

r|q

1

ϕ(q)

∑
L(ρ,χ∗)=0,
|Im(ρ)|≤T

xβ−1 = OB

(
1

logB x

)
.

from an earlier discussion, we see that the same estimate is true for the expression 4.2. Using
the mean value theorem and along with the discussion in this section we see that summands
with

√
x < q ≤

√
x+ y contribute at most OB(1/log

B x) for all B > 0. From the error term
in the equation 4.1 and proof of Hoheisel’s theorem in [IK04, Chapter 10] we see that there
exists a θ in (0, 1) such that the following holds for x≫ 2 and xθ < y < x,

T (x+ y)− T (x) = C1y log x+ C1(x+ y) log

(
1 +

y

x

)
+ {2γ − 1− 2C2}y +O

(
y

log x

)
.

This concludes the proof of Theorem 1.2. Next, we present a simple corollary.

Corollary. Let θ and y be as in the Theorem 1.2, suppose that limx→∞ y/x = 0 then we have
that,

lim
x→∞

T (x+ y)− T (x)

y
− C1 log x = C1 − 2C2 + 2γ − 1.
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